Anita Modrzejewska https://orcid.org/0009-0006-4086-7452 , Piotr Biskup https://orcid.org/0000-0003-3742-8388

© Anita Modrzejewska, Piotr Biskup. Article available under the CC BY-SA 4.0 licence

ARTICLE

(English) PDF

ABSTRACT

The research presented in the paper used tools offered by network analysis and the graph theory. The study examined the empirical properties of the intra-EU trade network in the years 1999–2019 and confirmed that the EU trade links were of a disassortative nature. The use of network indicators has proven that the European trade network was characterised by a coreperiphery structure. The study shows that Germany was the undisputed leader of the EU trade network over the studied years, although its central position was weakening over the years.

KEYWORDS

network analysis, international trade, European integration, core-periphery structure

JEL

D85, F14, F15

REFERENCES

Beaudreau, B. C. (2004). World Trade. A Network Approach. iUniverse.

Beinhocker, E. D. (2006). The Origin of Wealth. Evolution, Complexity, and the Radical Remaking of Economics. Harvard Business School Press.

Bhattacharya, K., Mukherjee, G., & Manna, S. S. (2007). The international trade network. In A. Chatterjee & B. K. Chakrabarti (Eds.), Econophysics of Markets and Business Networks: Proceedings of the Econophys-Kolkata III (pp. 139–147). Springer.

Bhattacharya, K., Mukherjee, G., Saramäki. J., Kaski, K., & Manna, S. S. (2008). The international trade network: weighted network analysis and modelling. Journal of Statistical Mechanics: Theory and Experiment, (2), 1–5. https://doi.org/10.1088/1742-5468/2008/02/P02002.

Bloch, F., Jackson, M. O., & Tebaldi, P. (2023). Centrality measures in networks. Social Choice and Welfare, 61(2), 413–453. https://doi.org/10.1007/s00355-023-01456-4.

Fagiolo, G. (2006, December 1). Directed or Undirected? A New Index to Check for Directionality of Relations in Socio-Economic Networks. Economics Bulletin, 3(34), 1–12. https://doi.org /10.48550/arXiv.physics/0612017.

Fagiolo, G. (2007). Clustering in complex directed networks. Physical Review E, 76(2), 1–16. https://doi.org/10.1103/PhysRevE.76.026107.

Fagiolo, G. (2010). The international-trade network: gravity equations and topological properties. Journal of Economic Interaction and Coordination, 5(1), 1–25. https://doi.org/10.1007/s11403-010-0061-y.

Fagiolo, G., Reyes, J., & Schiavo, S. (2008). On the topological properties of the world trade web: A weighted network analysis. Physica A: Statistical Mechanics and its Applications, 387(15), 3868–3873. https://doi.org/10.1016/j.physa.2008.01.050.

Fagiolo, G., Reyes, J., & Schiavo, S. (2010). The evolution of the world trade web: a weighted network analysis. Journal of Evolutionary Economics, 20(4), 479–514. https://doi.org/10.1007/s00191-009-0160-x.

Fisher, E., & Vega-Redondo, F. (2006). The linchpins of a modern economy. 2007 AEA Annual Meeting, Chicago. https://www.aeaweb.org/annual_mtg_papers/2007/0107_0800_1502.pdf.

Garlaschelli, D., & Loffredo, M. I. (2004). Fitness-dependent topological properties of the world trade web. Physical Review Letters, 93(18), 1–4. https://doi.org/10.1103/PhysRevLett.93.188701.

Garlaschelli, D., & Loffredo, M. I. (2005). Structure and evolution of the world trade network. Physica A: Statistical Mechanics and its Applications, 355(1), 138–144. https://doi.org/10.1016/j.physa.2005.02.075.

Jackson, M. O. (2008). Social and Economic Networks. Princeton University Press. https://web.stanford.edu/~jacksonm/netbook.pdf.

Kim, S., & Shin, E. H. (2002). A Longitudinal Analysis of Globalization and Regionalization in International Trade: A Social Network Approach. Social Forces, 81(2), 445–468. https://doi.org/10.1353/sof.2003.0014.

Modrzejewska, A., & Pajor, A. (2011). Analiza sieciowa struktury obrotów handlowych w UE. In: S. Partycki (Ed.), Społeczeństwo sieci. Gospodarka sieciowa w Europie Środkowo-Wschodniej (vol. 1; pp. 643–656). Wydawnictwo KUL.

Newman, M. E. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27(1), 39–54. https://doi.org/10.1016/j.socnet.2004.11.009.

Onnela, J., Saramaki, J., Kertész, J., & Kaski, K. (2005). Intensity and coherence of motifs in weighted complex networks. Physical Review E, 71(6), 1–5. https://doi.org/10.1103/PhysRevE.71.065103.

Serrano, M. Á., & Boguná, M. (2003). Topology of the world trade web. Physical Review E, 68(1), 1–5. https://doi.org/10.1103/PhysRevE.68.015101.

Serrano, M. Á., Boguná, M., & Vespignani, A. (2007). Patterns of dominant flows in the world trade web. Journal of Economic Interaction and Coordination, 2(2), 111–124. https://doi.org/10.1007/s11403-007-0026-y.

Squartini, T., Fagiolo, G., & Garlaschelli, D. (2011a). Randomizing world trade. I. A binary network analysis. Physical Review E, 84(4), 1–17. https://doi.org/10.1103/PhysRevE.84.046117.

Squartini, T., Fagiolo, G., & Garlaschelli, D. (2011b). Randomizing world trade. II. A weighted network analysis. Physical Review E, 84(4), 1–16. https://doi.org/10.1103/PhysRevE.84.046118.

Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511815478.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0